Fourier Analysis Mar 19, 2.024
Review:
Consider the heat equation on the circle

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[0,1), \quad t>0 \tag{*}\\
u(x, 0)=f(x) .
\end{array}\right.
$$

$U=U(x, t)$ denotes the temperature at the point x and time t.

In the last lecture, we roughly derived the following formula of U by using the superposition method:

$$
U(x, t)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{-4 \pi^{2} n^{2} t} e^{2 \pi i n x} \cdot(* * *)
$$

Proposition 1: Let f be 1-periodic function on \mathbb{R}.
Assume that f is Riemann integrable on $[0,1)$.
Then

$$
U(x, t)=\sum_{n \in z} \hat{f}(n) e^{-4 \pi^{2} n^{2} t} e^{2 \pi i n x} \quad \text { on } \quad \mathbb{R} \times(0, \infty)
$$

satisfies (*). Furthermore if f is cts at x_{0}, then $\lim _{t \rightarrow 0} U\left(x_{0}, t\right)=f\left(x_{0}\right)$.

Recall a useful result in Math 2060:
The. Let $J \subset \mathbb{R}$ be an interval. Let $\left(f_{n}\right)$ be a sequence of diff functions on J.

Suppose (1) $\exists x_{0} \in J$ such that $f_{n}\left(x_{0}\right)$ converges as $n \rightarrow \infty$
(2) $\quad f_{n}^{\prime}(x) \rightrightarrows g(x)$ on J, as $n \rightarrow \infty$.

Then $\cdot f_{n}(x) \rightarrow f(x)$ on J for some f as $n \rightarrow \infty$.

$$
\text { - } f^{\prime}(x)=g(x) \text { on } J \text {. }
$$

Pf of Prop 1 .
Let $t_{0}>0$. Notice that

$$
\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{-4 \pi^{2} n^{2} t} e^{2 \pi i n x}
$$

Converges uniformly on $\mathbb{R} \times\left(t_{0}, \infty\right)$ (by Weierstrass' M- test)
Hence U is cts on $\mathbb{R} \times\left(t_{0}, \infty\right)$.
Using the same argument, we see that

$$
\sum_{n=-\infty}^{\infty} \frac{\partial}{\partial t}\left(\hat{f}(n) e^{-4 \pi^{2} n^{2} t} e^{2 \pi i n x}\right)
$$

conlenges uniformly on $\mathbb{R} x\left(t_{0}, \infty\right)$
Thus

$$
\frac{\partial u(x, t)}{\partial t}=\sum_{n=-\infty}^{\infty} \frac{\partial}{\partial t}\left(\hat{f}(n) e^{-4 \pi^{2} n^{2} t} e^{2 \pi i n x}\right)
$$

Similarly

$$
\frac{\partial^{2} u}{\partial x^{2}}=\sum_{n=-\infty}^{\infty} \frac{\partial^{2}}{\partial x^{2}}\left(\hat{f}(n) e^{-4 \pi^{2} n^{2} t} e^{2 \pi i n x}\right)
$$

Since $\frac{\partial}{\partial t}\left(\hat{f}(n) e^{-4 \pi^{2} n^{2} t} e^{2 \pi i n x}\right)$

$$
\begin{aligned}
& =\frac{\partial^{2}}{\partial x^{2}}\left(\hat{f}(n) e^{-4 \pi^{2} n^{2} t} e^{2 \pi i n x}\right) \\
& =\hat{f}(n) \cdot\left(-4 \pi^{2} n^{2}\right) e^{-4 \pi^{2} n^{2} t} e^{2 \pi i n x}
\end{aligned}
$$

we obtain

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad \text { on } \quad \mathbb{R} \times(t, \infty)
$$

Since t_{0} is arbitrarily taken, so u satisfies on $\mathbb{R}_{x}(0, \infty)$.

To see the limiting property of $U(x, t)$ as $t \rightarrow 0$,
let us write

$$
H_{t}(x):=\sum_{n=-\infty}^{\infty} e^{-4 \pi^{2} n^{2} t} e^{2 \pi i n x} \text { on } \mathbb{R} \times(0, \infty)
$$

We call it the heat kernel on the circle.
$\left(H_{t}\right)_{t>0}$ is a good kernel as $t \rightarrow 0$ in the following sense:

- $\int_{0}^{1} H_{t}(x) d x=1$ for all $t>0$ (easily checked)
- $H_{t}(x)>0$, for all $t>0$ (will be checked in our later classes)
- $\forall \delta>0, \quad \int_{\delta}^{1-\delta} H_{t}(x) d x \rightarrow 0$ as $t \rightarrow 0$.

We claim that

$$
\begin{aligned}
U(x, t) & =H_{t} * f(x) \\
& =\int_{0}^{1} f(x-y) H_{t}(y) d y
\end{aligned}
$$

Notice that

$$
\begin{aligned}
H_{t} * \hat{f}(n) & =\widehat{H_{t}(n)} \cdot \hat{f}(n) \\
& =e^{-4 \pi^{2} n^{2} t} \cdot \hat{f}(n)
\end{aligned}
$$

$$
\hat{u}_{t}(n)=e^{-4 \pi^{2} n^{2} t} \hat{f}(n)
$$

Since both $U(\cdot, t)$ and $H_{t} * f(\cdot)$ are cts in x and they have the same Fomier series, so

$$
U(x, t)=H_{t} * f(x) .
$$

Since $\left(H_{t}\right)_{t>0}$ is a good kernel as $t \rightarrow 0$, so we get $\lim _{t \rightarrow 0} u(x, t)=f(x)$ provided that f is cts at x.

Chap 5. The Fourier transform on \mathbb{R}.

A reasonable 2π-penodic function on \mathbb{R} can be represented by its Fomier series.

Similarly a reasonable l-perodic function on \mathbb{R} can be represented by its Fourier series.
For instance, if f is an l-periodic diff function on \mathbb{R}, then

$$
f(x)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{\frac{2 \pi}{l} i n x}
$$

where $\hat{f}(n)=\frac{1}{l} \int_{0}^{l} f(x) e^{-\frac{2 \pi}{l} i n x} d x$.

- Do we have an analogue for non-perodic functions on \mathbb{R} ?
§5.1 Functions of moderate decrease and integrations.

Def. A function $f: \mathbb{R} \rightarrow \mathbb{C}$ is said to be of moderate decrease if
(1) f is cts on \mathbb{R}.
(2) $\exists A>0$ such that
$|f(x)| \leqslant \frac{A}{1+x^{2}}$ for all $x \in \mathbb{R}$.

For convenience, we use $M(\mathbb{R})$ denote the collection of all functions of moderate decrease.

Then $M(\mathbb{R})$ is a vector space.
If $f, g \in M(\mathbb{R})$, then $\alpha f+\beta g \in M(\mathbb{R})$ for all $\alpha, \beta \in \mathbb{C}$.

Def. (improper integration)
Let $f \in M(\mathbb{R})$. We define

$$
\int_{-\infty}^{\infty} f(x) d x=\lim _{N \rightarrow \infty} \int_{-N}^{N} f(x) d x
$$

Lemma 1. Let $f \in M(\mathbb{R})$. Then the above limit exists.
Pf. White $I_{N}:=\int_{-N}^{N} f(x) d x, N \in \mathbb{N}$.
To show the limit exists, we only need to show that $\left(I_{N}\right)$ is a Cauchy sequence.

Let $M>N$.

$$
\begin{aligned}
\left|I_{M}-I_{N}\right| & =\left|\quad \int_{|x| \leqslant M} f(x) d x-\int_{|x| \leqslant N} f(x) d x\right| \\
& =\left|\quad \int_{N<|x| \leqslant M} f(x) d x\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \int_{N<|x| \leqslant M}|f(x)| d x \\
& \leqslant \int_{|x|>N} \frac{A}{1+x^{2}} d x \\
& \leqslant A \int_{|x|>N} \frac{1}{x^{2}} d x \\
& =\frac{2 A}{N} \rightarrow 0 \text { as } N \rightarrow \infty
\end{aligned}
$$

So $\left(I_{N}\right)$ is a Cauchy sequence.

Lemma 2. We write

$$
L(f)=\int_{-\infty}^{\infty} f(x) d x \text { for } f \in M(\mathbb{R})
$$

Then
(1) L is linear, i.e.

$$
L(\alpha f+\beta g)=\alpha L(f)+\beta L(g)
$$

for $f, g \in M(\mathbb{R})$ and $\alpha, \beta \in \mathbb{C}$.
(2) L is translation invariant.

$$
\int_{-\infty}^{\infty} f(x+h) d x=\int_{-\infty}^{\infty} f(x) d x, \quad \forall h \in \mathbb{R}
$$

(3) Scaling under dilation: $\forall \delta>0$,

$$
\delta \int_{-\infty}^{\infty} f(\delta x) d x=\int_{-\infty}^{\infty} f(x) d x .
$$

(4) Absolute continuity.

$$
\lim _{h \rightarrow 0} \int_{-\infty}^{\infty}|f(x+h)-f(x)| d x=0
$$

Pf of (4). Let $\varepsilon>0$. Assume that $h \in(-1,1)$.
Take a large number $\mathbb{N}>0$ such that

$$
\int_{|x| \geqslant N-1}|f(x)| d x<\varepsilon .
$$

Then for $h \in(-1,1)$, we have

$$
\begin{aligned}
& \int_{|x| \geqslant N}|f(x+h)| d x \\
& \leqslant \int_{|x| \geqslant N-1}|f(x)| d x<\varepsilon .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \quad \int_{-\infty}^{\infty}|f(x+h)-f(x)| d x=\begin{array}{l}
|f(x+h)-f(x)| d x \\
\leqslant \\
\quad \int_{|x| \geqslant N}|f(x+h)| d x+\int_{|x| \leqslant N}|f(x+h)-f(x)| \\
\quad|f(x)| d x
\end{array} \quad \begin{array}{l}
|x| \leqslant N
\end{array}|f(x+h)-f(x)| d x
\end{aligned}
$$

$$
\leqslant 2 \varepsilon+\int_{|x| \leqslant N}|f(x+h)-f(x)| d x
$$

for all $h \in(-1,1)$.

Notice that f is Uniformly cts on

$$
[-N-1, N+1]
$$

Hence $\exists \delta>0$ such that

$$
|f(x+h)-f(x)| \leqslant \frac{\varepsilon}{2 N}
$$

for all $x \in[-N, N]$ and $|h|<\delta$.
So for h with $|h|<\delta$,

$$
\begin{aligned}
\int_{|x| \leqslant N}|f(x+h)-f(x)| d x & \leqslant \frac{\varepsilon}{2 N} \cdot 2 N \\
& =\varepsilon
\end{aligned}
$$

Therefore

$$
\int_{-\infty}^{\infty}|f(x+h)-f(x)| d x<3 \varepsilon \text { if }|h|<\delta .
$$

